Neural Networks for Language Independent Emotion Recognition in Speech

نویسندگان

  • Yongjin Wang
  • Muhammad Waqas Bhatti
چکیده

This chapter introduces a neural network based approach for the identification of human affective state in speech signals. A group of potential features are first identified and extracted to represent the characteristics of different emotions. To reduce the dimensionality of the feature space, whilst increasing the discriminatory power of the features, a systematic feature selection approach which involves the application of sequential forward selection (SFS) with a general regression neural network (GRNN) in conjunction with a consistency-based selection method is presented. The selected parameters are employed as inputs to the a modular neural network, consisting of sub-networks, where each sub-network specializes in a particular emotion class. Comparing with the standard neural network, this modular architecture allows decomposition of a complex classification problem into small subtasks such that the network may be tuned based on the characteristics of individual emotion. The performance of the proposed system is evaluated for various subjects, speaking different languages. The results show that the system produces quite satisfactory emotion detection performance, yet demonstrates a significant increase in versatility through its propensity for language independence. DOI: 10.4018/978-1-60566-902-1.ch025

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Using Scalogram Based Deep Structure

Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Statistical Variation Analysis of Formant and Pitch Frequencies in Anger and Happiness Emotional Sentences in Farsi Language

Setup of an emotion recognition or emotional speech recognition system is directly related to how emotion changes the speech features. In this research, the influence of emotion on the anger and happiness was evaluated and the results were compared with the neutral speech. So the pitch frequency and the first three formant frequencies were used. The experimental results showed that there are lo...

متن کامل

Language Independent Recognition of Human Emotion using Artificial Neural Networks

This article presents a language-independent emotion recognition system for the identification of human affective state in the speech signal. A group of potential features are first identified and extracted to represent the characteristics of different emotions. To reduce the dimensionality of the feature space, whilst increasing the discriminatory power of the features, we introduce a systemat...

متن کامل

Scaling Behavior of Maximal Repeat Distributions in Genomic Sequences

1. Language Independent Recognition of Human Emotion using Artificial Neural Networks Waqas Bhatti, The University of Sydney, Australia Yongjin Wang, University of Toronto, Canada Ling Guan, Ryerson University,Canada This article presents a language-independent emotion recognition system for the identification of human affective state in the speech signal. A group of potential features are firs...

متن کامل

A hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine

Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016